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AbstrocGThe measured ratio of the specific heats y for liquid metals near 
the meltinK point and for the liquid h u l a t o r  argon juet above ite melting point 
differ considerably. For metals, y - 1.2 or 1.3 while for argon y -2.2. Furt.her- 
more, the measured specific heat at constant volume. per atom, is near to 3 k ~  
and always slightly greater, for metals, in contrast to argon for which 
C ,  N 2.3 kB near the melting point. 

These observations suggest that a phonon model should be good in liquid 
metals, but that a very ‘anharmonic’ situation existe in liquid argon. That the 
softer core and longer range potentials characteristic of metals will lead to y 
values near to unity is confirmed by using an inequality due to Schofield to 
obtain an upper bound for y. In a model of liquid Na, using the long-range 
oscillatory potential of Paskin and Rahman which fib the neutron structure 
factor, we obtain y S 1.2. The same inequality for argon yields y 5 3.5. The 
main contribution for argon comes from the region inside 4A0, whereas the 
long-range contribution is large for Na. 

For liquid metals, the phonon picture yields for C, corrections to 3 k ~  
which are small, but always positive, the magnitude of the corrections being 
related to the structure factor. But for argon the phonon picture is clearly bad 
ae evidenced by y -2.2 and attempts are made instead to estimate C, - C ,  
and C, from exact equations which unfortunately involve the 3 and 4 particle 
correlation functions. T h e  value of C, - C ,  is shown to depend very sensitively 
on the approximation made for gs ; the superposition approximation being 
unsuitable for this purpose. 

1. Introduction 

The measured values of y ,  the ratio of specific heats, are all srourid 1.2 
or 1.3 near the melting points of liquid metals. In marked contrast, y for 
liquid argon just above its melting point (at 84’K) is 2.2. Additionally, 
C, for metals at the melting point is found experimentally to be near, and 
generally slightly in excess of, 3 k ~ .  

These facts suggest that  a phonon theory should be a good starting 
point for liquid metals, in contrast to the situation in liquid argon. For a 
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54 P. BRATBY, T. GASEELL AND N. H. MARCH 

phonon theory, the zeroth order values are y = 1 and C ,  L= 3 k ~  which are 
already very reasonable estimates for metals. 

A variety of evidence is now available which demonstrates that the 
forces in liquid metals have softer cores and are longer range than in argon, 
which is usefully described by a relatively hard sphere-like model, with the 
addition of a van der Waals tail. We might anticipate that i t  is in the very 
different character of these force laws that the differences in the specific 
heats arise and the object of this paper is to turn the above qualitative 
ideas into a numerical calculation. 

A precise quantitative calculation of y can, in principle, be made (see 
Eqs. (2.2) and (2.10) below) but in practice we shall content ourselves with 
obtaining upper bounds. The point here is that an upper bound can be 
calculated in term8 of the radial distribution function g(r)  and the pair 
potential +(r), whereas a procise calculation involves the three and four 
particle correlation functions gr and ga . 

2. Theory of Specific Heats in Terms of Static Correlation Functions 

We summarize briefly below the chief tools we shall use to discuss the 

Two results due to Schofield (1966) will be used. The first is an inequality 
specific heats of liquids. 

for the ratio of the specific heats y which we shall write in the form 

where S(o)  is the long wavelength limit of the liquid structure factor S(k)  
and p is the number density. The second result is for the specific he& a t  
constant volume C, in terms of g3 and gl, namely 

- [P I g( r )  4 ( r )  dr + *P2 I {gdn)  - g(r) )  +(.) dr dsI2 (2.2) S(0) 
We shall also develop a method for calculating C, - C, from the usual 

thermodynamic relation 
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55 SPECIFIC H E A T S  OF LJQUIDS A N D  P H O N O N  T H E O R Y  

This can be rewritten in the form 

and using the well known result 

and the thermodynamic equation (Zemansky, 1951) 

we !ind 

where P is the pressure and U is the internal energy.: 

when the pair potential #(r)  is independent of density : 
A useful form of (aU/aV) ,  may be obtained from liquid state theory 

Using the relation of Schofield for the density dependence of the radial 
distribution function in terms of g3 we obtain 

Combining Eqs. (2.7) and (2.9) we can write 

It is perhaps worth mentioning that (2.7) yields an exact result for hard 
spheres when we put ( a U / a V ) ,  = 0. Estimating the pressure P from machine 
calculations (Alder and Wainwright, 1960) and S(o) from the Percus-Yevick 
solution for hard spheres at a density appropriate to fluid argon near the melt- 
ing point leads to a value for y of 2.6. Though this is quite near to the measured 
value of 2.2 for argon, thie seems largely accidental for the term ( a U / a V ) ,  in 
(2.7) is really the dominant one. 
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56 P. BRATBY, T. GIASKELL AND N. H. MARCH 

where we have employed the usual expression for the pressure P from 
liquid state theory. 

3. Numerical Estimates of Specific Heats for Argon near Triple Point 

In  writing down the inequality ( Z . l ) ,  it has, of course, been assumed that 
the total potential energy # of the h i d  can be decomposed into pair 
potentials +(r i j )  via 

For argon, this is ccrtainly a useful starting point, and the potential +(r) 
is known to have the form shown in Fig. l(a). For this interaction, 
Rahman (1964) has used the method of molecular dynamics to obtain 
the radial distribution function g(r) ,  which is plotted in Fig. I(b). 
These results, obtained for a number density p = 2.05 x loz2 ~ m - ~  and 

I 
0 1 2 3 

r/u 

Fig. l(a). Pair potential +(r)  for argon. Hard core diameter u is taken as 
3.4 A'. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
5
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1
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girl 

2 3 4 

r / u  

Fig. l(b). Radial distribution function g(r )  calculated by Rahman for number 
density p = 2.05 x 10" cm-* and T = 94.4"K, using potential +(r) shown in 
Fig. I(a). 

T = 94.4 OK,: 'have been used to calculate numerically the value of the 
integral in (2.1 ) , and we find 

"he calculation of S(k)  for small k is diilicult for the small system con- 
sidered by Rahman, but since his method appears to be giving an essentially 
exact g(r) for the realistic potential shown in Fig. 1, it seems quite con- 
sistent to use the experimental value S(o) = 0.06 in (2.1). We then find 

y < 3.5 f 0.3, (3.3) 

$ These values are chosen because they correspond to Rahman's molecular 
dynamice calculations. The temperature is somewhat higher than the triple 
point temperature. 
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58 P. BRATBY, T. OASKELL AND N. H. MARCH 

the error shown arising from the errors in u s i n g  the graph of g(r)  given by 
Rahman. 

More interesting than the numerical bound is the fact that the integrand 
in (2.1) is quite short-range, as shown in Fig. 2. This indicates strongly 
that the main contribution to y is coming from a region inside 4Ao, the 

Inlegrand 
of i in 
arbilrary 
units 

Fig. 2. Tntegrand of y for argon (see Eq. (2.1) ) versus distance r. 

atomic diameter being 3.4A". Though a knowledge only of the upper 
bound (3.3) cannot be quite conclusive, the value of y appears to be 
dominated by the short-range properties of g(r)  and +(r ) .  This is in marked 
contrast to Na, which we shall discuss below. 

3.1. SUPERPOSITION APPROXIMATION FOR g3 

To make progress with the evaluation of (aU/aV) ,  in (2.9), we shall 
first rewrite this in a form which is similar to the term in g3 involvcd in 
equation (2.2) for C,,. This yields 
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SPECIFIC HEATS OF LIQUIDS AKD PHONON THEORY 59 

At this stage, we shall use the Kirkwood approximation for g3, namely 

9 3 b )  N 9(7) 9( I 9 - r I 1. (3.5) 

Then we may write for the term in g3 in the brackets in (3.4) 

P2 I[g3(rs) - s(r)l +(r)  dr ds = 

p 2  [g(r)[l +h(s) +h.( I s - r  I ) +h(s)  h( 1 s - r  I ) - 11 +(r)  dr ds (3.6) 
J 

where h(r) = g(r)  - 1. Using the fact that 

p Jh(s)  ds = S(0) - 1 

(3.6) becomes 

Thus, from (3.4) we have 

+ g(r) + ( r )  dr P ( k )  eik * dk] . (3.9) ‘I 
The appearance of the factor S(o) in the fist term in the brackets is 
significant in what follows. If we use Rahman’s results to cstimate this 
term, we find 

I g ( r )  +(r) dr = - 14.3. 
ksT 

(3.10) 

Assuming this dominates the value of (aU/aV),, we obtain from (2.7), 
after noting that the pressure term is very small compared with (aU/aV),, 
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60 P. BRATBY, T. O A S K E U  AND N. H. MARCH 

that C, - Cvw 3 k ~ ,  in good agreement with the measured value a t  the 
triple point of 2 . 8 k ~ .  However, when we estimate the second term in 
(3.9) from the results of Verlet (1968); for the same density and temperature 
that Rahman used, it is far too large in absolute value, the second term 
in the square bracket being 

- 1.2kBT. 

Thus the superposition approximation is bad for calculating C, - C ,  . 
On the other hand, if we return to (2.9) and make the alternative assump- 
tion 

SS('S) - g(r)  g(s) = g(r)  4 I 9 - I 1 (3.1 1)  

inside the integral in (2.9), which is equivalent to assuming in (2.8) that 
p ( a g / a p )  is small compared with g,  then (3.9) without the second term 
follows. Thus, in this particular case, (3.11) is a more useful approximn- 
tion than the Kirkwood form. It is the fact that S(o) cancels when we 
include only the first term in (3.9) that ie the essential point. 
This line of argument also suggests an alternative inequality for y to 

that ofschofield. Dividing both sides of (2.7) by C, we get the result 

(3.12) 

Since C, is always greater than QkB, (3.12) can he replaced by the in- 
equality 

(3.13) 

Using the estimate for (aU/aV),  haaed on (3.11), we find y G 3, which is a 
slightly better bound than that given previously. 

Finally, we have attempted to calculate C, from (2.2). However, 
neglecting the term in g p  and using the integrals recorded above plus 

and 

p" ]g3(rs) +(r)  +(s) dr ds = 157, 
(ks'l')' 

$ Since h(k)  is given by Verlet, but not. by Rahman. 
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SPECIFIC HEATS OF LIQUIDS AND PHOXON THEORY 61 

i t  is clear that massive cancellation must occur between the various terms 
in (2.2). Therefore, this formula is very sensitive to the approximations 
made for the higher order correlation functions and while this might be 
useful later as a test of more refined theories, it is clearly not, at  present, ;L 
practical way to calculate C, . 

4. Specific Heats for Liquid Sodium and Phonon Theory 

However, for the liquid metals a method which closely resembles the 
harmonic approximation in the solid phase should be more appropriate. 
Such an approach has been discussed in earlier work by Eisenschitz and 
Wilford (1962; see also Toombs, 1965). In this work the Hamiltonian of 
the system is written in terms of a set of collective coordinates which are 
the Fourier components of the particle density, pq, and the conjugate 
momenta b, given by p,, = c exp ( - iq * q) and pj = - i c qb, exp ( - i q  - '1) 

respectively. I n  order to maintain the correct number of degrees of free- 
dom, the values of the wave vector q are restricted to the 3N within a 
sphere of radiu5 qc given by qc = (18a2 N/V)l13, N being the number of 
atoms a.nd V the volume of the system. 

j cl 

Their result for C, is 

where U(q)  is the Fourier component of the effective ion-ion interaction 
and /3 = (kBT)- ] .  The harmonic result C, = 3 k ~  arises within an approxi- 
mation which treats the collective coordinates pq as a set of independent 
oscillators (in the isotropic solid they vibrate harmonically with the 
frequency of the longitudinal normal modes), while the second term 
estimates the correction to this harmonic approximation due to the 
coupling of the oscillators. Unfortunately this term involves a knowledge 
of U(q)  which a t  present is somewhat uncertain. However, the theory also 
relates the Fourier components U ( q )  to the structure factor of the liquid 
S(q) and the relationship, given by Toombs, is 

We therefore suggest that we rewrite the expression for C, in terms of 
S(q) and use the experimentally determined structure factors to obtain 
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62 P. BRATBY, T. GASKELL AND N. H. MARCH 

an estimate of the size of the correction to the harmonic result. Since 
S(q) is, by definition; positive definite, the correction always increases 
the value of C , .  An upper bound is immediately obtained by replacing 
S( I q - 1 I ) by its maximum value within the range 0 < q < qc and hence 

< k ~ [ 3  + 1.5 S,]. (4.3) 

For Na close to the melting point ( N / V )  = 0.0243 atoms A-3 and 
qc = 1.63 A-l. Using the data of Gingrich and Heaton (1961) the maximnm 
value of S(q) is its value a t  qc which is approximately 0.4 so that C, < 3 .6k~ .  
This must overeetimate somewhat the specific heat as given by (4.1), since 
over a substantial part of the range, 0 < q < qe , S(q) is small (considerably 
less than 0.4) and only increases when q approaches qe as i t  begirs to rise 
towards the fist peak. It seems worth noting that the connection between 
C ,  and the structure proposed here is born out in one case where Ppecific 
heat and structure data are available. C, for K as given by Eisenschitz 
and Wilford is 3 .62k~ ,  larger than the specific heat of Na, and correspond- 
ingly the measured structure factor appears to be larger over the relevant 
range of q values. If the inequality above is used in this case (qc = 1.33, 
S,,, N 0.65) we obtain the result for K that C, < 4. 

4.1. ESTIMATE OF RATIO OF SPECIFIC HEATS FOR MODEL OF LIQUID 
SODIUM 

Finally we discuss the ratio of the specific heats y for a model of liquid 
sodium. In the case of a liquid metal, a proper calculation of the electronic 
energy will eventually be required. This, a t  present, does not seem to be a 
practical approach to calculate y,  and we shall adopt as a model to simulate 
the properties of liquid Na, a pair potential which generates the liquid 
structure factor as measured by neutrons. Such a potential, due to Paskin 
and Rahman is shown in Fig. 3(a), together with the corresponding g(r)  
in Fig. 3(b). The neutron structure data is also shown in curve 3 of Fig. 3(b) 
for comparison. 

We stress that in the present model all the effects of the electrons are 
assumed to be built into the pair potential in Fig. 3(a). The results we 
obtain below suggest that correction terms to be included in the theory, 
when a first principles calculation is made which starts from the system of 
electrons and ions, are small. 
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I 
0 1 2 3 4 5 6 7 8 9 

r in A' 

Fig. 3(a). Long-range oscillatory potentials LRO I and I1 used by Paskin 
and & b a n  for liquid hTa. 

With the Paskin-Rahman potential of the form 

i t  is essential to include carefully an asymptotic contribution, the integrand 
in (2.1) stretching out to distances - 12 A (cf. Fig. 4). The result we obtain 
is 

and using the mcasured value S(o) =0.028 we find 

y < 1.2 (4.7) 
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r In A. 

Fig. 3(b). g( r ) ’s  calculated from potentials LRO I and I1 of Fig. 3(a) by 
Paakin and Rahman (curves 2 and 1 respectively). Neutron meaaurements of 
structure are shown in curve 3. 

It is interesting that the inequality already allows us in this model to 
write y = 1.1 f 0.1 which settles the matter for this potential. 

However, this result is sensitive to  the form of the potential, and if we 
use the deeper potential shown in curve 1 of Fig. 3(a) we obtain a larger 
value of the upper bound for y ,  though still only half of the upper bound 
(3.3) for argon. This deeper potential is less realistic, however, being in 
disagreement with the measured neutron structure factor. 

5. Summary 

The starting point suggested by experiment for liquid metals : namely 
that the nature of the forces (softer cores plus long-range parts) is leading 
to an independent phonon picture as a useful zero order model, is aon- 
firmed by the present calculations, though more work must be done to 
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lntegrand 
of Y in 
arbitrary 
units 

L 

Fig. 4. Integrand of y for sodium (see Eq. (2.1)) a t  melting point versus 
distance r.  Curve 1 corresponds to g(r) given in curve 1 of Fig. 3(b). 

incorporate the effect of the electrons directly into the theory. The 
specific heat C, is generally expected to be somewhat larger than 3 k s  for 
metals. 

In contrast, the value of C, for argon, substantially less than 3 k s ,  
cannot possibly be obtained from such a picture, and the value of y is 
dominated by the core region. 
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